tungsten | Stable | Atomic mass* | Mole | |--------------------|--------------|----------| | isotope | | fraction | | $^{180}{ m W}$ | 179.946 704 | 0.0012 | | $^{182}\mathrm{W}$ | 181.948 2042 | 0.2650 | | ^{183}W | 182.950 223 | 0.1431 | | ^{184}W | 183.950 9312 | 0.3064 | | ^{186}W | 185.954 3641 | 0.2843 | ^{*} Atomic mass given in unified atomic mass units, u. Half-life of radioactive isotope Less than 1 second ## Important applications of stable and/or radioactive isotopes Isotopes in geochronology 1) ¹⁸²Tungsten is the stable daughter product of the decay of ¹⁸²Hf with a half-life of 9 million years. While ¹⁸²Hf was present at the dawn of the Solar System, this isotope has long since decayed away. During the formation of the planets, including Earth, the elements hafnium and tungsten were partitioned into silicate minerals and metal phases, respectively. The measurement of excessive amounts of ¹⁸²W, arising from the decay of ¹⁸²Hf, that accumulated in silicate minerals can be used to estimate the time that elapsed between the formation of the Solar System and accretion of the planets. Figure 1: Core formation scenarios. ¹⁸²Hf is produced during the end stages of a super nova explosion and decays to ¹⁸²W. The Early Core Scenario shows that when a core forms relatively early after a super nova explosion, a small amount of ¹⁸²Hf will be present in the mantle that will produce a significant amount of ¹⁸²W. The Late Core Scenario shows that ¹⁸²Hf was produced and decays to ¹⁸²W prior to the formation of the metallic core. Once the metallic core begins to form, it will attract W since it is strongly attracted to metals. Almost all of the ¹⁸²W is partitioned into the metallic core and only a small amount will be left in the mantle. (Diagram Source: Steven Earle, Vancouver Island University). ## Isotopes in medicine - 1) ¹⁸⁰W is used to produce ¹⁸¹W, which is a therapeutic radioisotope. 2) Tungsten-Rhenium generators use ¹⁸⁸W, which is produced from ¹⁸⁶W. ¹⁸⁸W decays to ¹⁸⁸Re in the generator and can be used to produce a solution of Sodium perrhenate (Na¹⁸⁸ReO₄). Sodium perrhenate-¹⁸⁸Re can be used for radiopharmaceutical labeling and for brachytherapy.